Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Cancer ; 15(5): 1182-1190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356714

RESUMO

Background: Oral Submucosal Fibrosis (OSF) and Oral Leukoplakia (OLK) are well-known oral potentially malignant disorders, and cases of Oral Submucosal Fibrosis concomitant Oral Leukoplakia (OSF+OLK) are now being reported clinically. DNA image cytometry is an objective and non-invasive method for monitoring the risk of precancerous lesions in the oral cavity. Methods: A total of 111 patients with clinically characterized oral mucosal lesions underwent simultaneous and independent histopathological and DNA imaging cytometry assessments. Clinical data were also collected for each patient. Results: The frequency of DNA content abnormality was higher in the tongue than in other oral sites (P = 0.003) for OLK. The frequency of DNA content abnormality was higher in the tongue than in other oral sites (P = 0.035) for OSF+OLK. The differences of DNA content abnormality in age, sex, dietary habit, smoking, and alcohol intake were not observed in OLK and OSF+OLK. The study indicates an association between DNA content abnormality and pathological examination in OSF+OLK ( χ2 test, P = 0.007). OLK showed higher sensitivity and specificity than OSF, while the sensitivity and specificity of OSF+OLK are higher than OLK only and OSF only. Conclusion: DNA image cytometry can be utilized as an adjunctive device for the initial detection of oral potentially malignant disorders that require further clinical management.

2.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383528

RESUMO

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína HMGA1a/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Proteína HMGA1b , Linhagem Celular Tumoral
3.
Gene ; 905: 148219, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286267

RESUMO

OBJECTIVE: To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS: A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS: OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1ß, PPARG, TGFß1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-ß1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß in high glucose-induced RGC cells. CONCLUSION: The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.


Assuntos
Retinopatia Diabética , Células Ganglionares da Retina , Saponinas , Triterpenos , Ratos , Animais , Células Ganglionares da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Glucose/farmacologia , Glucose/metabolismo , Biologia Computacional , RNA Mensageiro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38204243

RESUMO

BACKGROUND: Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved. METHODS: A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using ß- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference. RESULTS: ß-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1ß (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement. CONCLUSION: This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.

5.
Org Biomol Chem ; 22(6): 1225-1233, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231009

RESUMO

Functionalization is a major challenge for the application of photoswitches. With the aim to develop novel bis-functional azo photoswitches with stationary photophysical properties, a series of phenolylazoindole derivatives were designed, synthesized, and characterized via NMR spectroscopy studies and high-resolution mass spectrometry (HRMS). Herein, UV/Vis and 1H NMR spectra revealed that the photostationary state (PSS) proportions for PSScis and PSStrans were 76-80% and 68-81%, respectively. Furthermore, the thermal half-lives (t1/2) of compounds A2-A4 and B2 ranged from 0.9 to 5.3 h, affected by the diverse substituents at the R1 and R2 positions. The results indicated that azo photoswitches based on the phenolylazoindole scaffold had stationary photophysical properties and wouldn't be excessively affected by modifying the functional groups. Compounds A4 and B2, which were modified with an aryl group, also exhibited fluorescence emission properties (the quantum yields of A4 and B2 were 2.32% and 13.34%) through the modification of the flexible conjugated structure (benzene) at the R2 position. Significantly, compound C1 was obtained via modification with a pharmacophore in order to acquire antifungal activities against three plant fungi, Rhizoctonia solani (R. solani), Botrytis cinerea (B. cinerea), and Fusarium graminearum (F. graminearum). Strikingly, the inhibitory activity of the cis-isomer of compound C1towards R. solani (53.3%) was significantly better than that of the trans-isomer (34.2%) at 50 µg mL-1. In order to further reveal the antifungal mechanism, molecular docking simulations demonstrated that compound C1 effectively integrates into the cavity of succinate dehydrogenase (SDH); the optically controlled cis-isomer showed a lower binding energy with SDH than that of the trans-isomer. This research confirmed that phenolylazoindole photoswitches can be appropriately applied as molecular regulatory devices and functional photoswitch molecules via bis-functionalization.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Rhizoctonia , Fungicidas Industriais/química
6.
Food Chem ; 439: 138107, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043283

RESUMO

Lentinus edodes (SM) are highly appreciated by the food industry together with consumers for nutrition and flavour. It is hypothesized the results of our study can indicate to the suitable cooking method for maximal nutrient retention, this study investigated the effects of six cooking methods on the proximate composition, digestive properties, and antioxidant activities of SM in vitro simulated digestion. The results revealed that the ash and protein contents of cooked samples were reduced excluding steaming and roasting, and likewise minerals during deep-frying and boiling (e.g., Mg from 1080.07 to 629.03 mg/kg, deep-frying). A conspicuous rise in fat and energy was found in deep-frying and stir-frying. Steaming retained more reducing sugar (3.80 mg/mL). Roasting improved bioaccessibility of most amino acids (e.g., 82.61%, Asp). Using oil as a medium was associated with higher antioxidant activities using water. Steaming and roasting were better for preserving the nutrient composition of cooked Lentinus edodes.


Assuntos
Antioxidantes , Cogumelos Shiitake , Antioxidantes/análise , Carboidratos , Culinária/métodos , Vapor , Digestão
7.
Food Funct ; 15(1): 208-222, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047533

RESUMO

Obesity, a global health concern, is linked with numerous metabolic and inflammatory disorders. Tibetan tea, a traditional Chinese beverage rich in theabrownin, is investigated in this study for its potential anti-obesity effects. Our work demonstrates that Tibetan tea consumption in C57BL/6J mice significantly mitigates obesity-related phenotypic changes without altering energy intake. Computational prediction revealed that Tibetan tea consumption reconstructs gene expression in white adipose tissue (WAT), promoting lipid catabolism and thereby increasing energy expenditure. We also note that Tibetan tea suppresses inflammation in WAT, reducing adipocyte hyperplasia and immune cell infiltration. Furthermore, Tibetan tea induces profound metabolic reprogramming, influencing amino acid metabolic pathways, specifically enhancing glutamine synthesis, which in turn suppresses pro-inflammatory chemokine production. These findings highlight Tibetan tea as a potential candidate in obesity prevention, providing a nuanced understanding of its capacity to modulate the cellular composition and metabolic landscape of WAT.


Assuntos
Obesidade , Camundongos , Animais , Tibet , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Chá/metabolismo , Tecido Adiposo/metabolismo
8.
J Immunol ; 212(1): 57-68, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019127

RESUMO

Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Infecções por Salmonella , Animais , Camundongos , Salmonella typhimurium , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
9.
Gut Microbes ; 15(2): 2293312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087436

RESUMO

Intestinal dysbiosis frequently occurs in abdominal radiotherapy and contributes to irradiation (IR)-induced intestinal damage and inflammation. Akkermansia muciniphila (A. muciniphila) is a recently characterized probiotic, which is critical for maintaining the dynamics of the intestinal mucus layer and preserving intestinal microbiota homeostasis. However, the role of A. muciniphila in the alleviation of radiation enteritis remains unknown. In this study, we reported that the abundance of A. muciniphila was markedly reduced in the intestines of mice exposed to abdominal IR and in the feces of patients who received abdominal radiotherapy. Abundance of A. muciniphila in feces of radiotherapy patients was negatively correlated with the duration of diarrhea in patients. Administration of A. muciniphila substantially mitigated IR-induced intestinal damage and prevented mouse death. Analyzing the metabolic products of A. muciniphila revealed that propionic acid, a short-chain fatty acid secreted by the microbe, mediated the radioprotective effect. We further demonstrated that propionic acid bound to G-protein coupled receptor 43 (GRP43) on the surface of intestinal epithelia and increased histone acetylation and hence enhanced the expression of tight junction proteins occludin and ZO-1 and elevated the level of mucins, leading to enhanced integrity of intestinal epithelial barrier and reduced radiation-induced intestinal damage. Metformin, a first-line agent for the treatment of type II diabetes, promoted intestinal epithelial barrier integrity and reduced radiation intestinal damage through increasing the abundance of A. muciniphila. Together, our results demonstrated that A. muciniphila plays a critical role in the reduction of abdominal IR-induced intestinal damage. Application of probiotics or their regulators, such as metformin, could be an effective treatment for the protection of radiation exposure-damaged intestine.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Camundongos , Animais , Intestinos , Verrucomicrobia/metabolismo
10.
Front Microbiol ; 14: 1278479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156008

RESUMO

Background: Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective: To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results: Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion: Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.

11.
Medicine (Baltimore) ; 102(44): e35555, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37933012

RESUMO

In order to investigate the potential link between Alzheimer's disease (AD) and chronic kidney disease (CKD), we conducted a comprehensive analysis using a bioinformatics approach. We downloaded AD and CKD datasets from the Gene Expression Omnibus database and analyzed differentially expressed genes and weighted gene co-expression networks to identify candidate genes for AD and CKD. We used a combination of the least absolute shrinkage and selection operator and random forest algorithms to select the shared genes. Subsequently, we shared genes and performed an immune infiltration analysis to investigate the association between different immune cell types and shared genes. Finally, we elucidated the relationship between the expression levels of the shared genes in disease samples and cells using single-cell analysis. Our analysis identified 150 candidate genes that may be primarily involved in immune inflammatory responses and energy metabolism pathways. We found that JunD Proto-Oncogene, ALF transcription elongation factor 1, and ZFP36 Ring Finger Protein Like 1 were the best co-diagnostic markers for AD and CKD based on the results of Least Absolute Shrinkage Selection Operator analysis and the random forest algorithm. Based on the results of immune infiltration analysis, macrophages and T-cells play a significant role in the progression of AD and CKD. Our scRNA-sequencing data showed that the 3 shared genes in AD were significantly expressed in astrocytes, excitatory neurons, oligodendrocytes, and MAIT cells. The 3 shared genes in CKD were significantly expressed in oligodendrocytes, neutrophils, fibroblasts, astrocytes, and T-cells. JunD Proto-Oncogene, ALF transcription elongation factor 1, and ZFP36 Ring Finger Protein Like 1 genes are the best diagnostic markers for AD and CKD.


Assuntos
Doença de Alzheimer , Insuficiência Renal Crônica , Humanos , Fator 1 de Elongação de Peptídeos , Marcadores Genéticos , Biologia Computacional , Biomarcadores
12.
BMC Cancer ; 23(1): 1012, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864148

RESUMO

PURPOSE: Detecting tumor progression of glioma continues to pose a formidable challenge. The role of fibroblast activation protein (FAP) in gliomas has been demonstrated to facilitate tumor progression. Glioma-circulating biomarkers have not yet been used in clinical practice. This study seeks to evaluate the feasibility of glioma detection through the utilization of a serum FAP marker. METHODS: We adopted enzyme-linked immunosorbent assay (ELISA) technique to quantify the relative FAP level of serum autoantibodies in a cohort of 87 gliomas. The correlation between preoperative serum autoantibody relative FAP levels and postoperative pathology, including molecular pathology was investigated. A series of FAP tests were conducted on 33 cases of malignant gliomas in order to ascertain their efficacy in monitoring the progression of the disease in relation to imaging observations. To validate the presence of FAP expression in tumors, immunohistochemistry was conducted on four gliomas employing a FAP-specific antibody. Additionally, the investigation encompassed the correlation between postoperative tumor burden, as assessed through volumetric analysis, and the relative FAP level of serum autoantibodies. RESULTS: A considerable proportion of gliomas exhibited a significantly increased level of serum autoantibody relative FAP level. This elevation was closely associated with both histopathology and molecular pathology, and demonstrated longitudinal fluctuations and variations corresponding to the progression of the disease The correlation between the rise in serum autoantibody relative FAP level and tumor progression and/or exacerbation of symptoms was observed. CONCLUSIONS: The measurement of serum autoantibody relative FAP level can be used to detect the disease as a valuable biomarker. The combined utilization of its detection alongside MR imaging has the potential to facilitate a more accurate and prompt diagnosis.


Assuntos
Glioma , Humanos , Glioma/patologia , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Autoanticorpos , Fibroblastos/metabolismo , Endopeptidases , Biomarcadores Tumorais/metabolismo
13.
Eur J Pharmacol ; 958: 175947, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37659689

RESUMO

OBJECTIVE: To reveal the core mechanism of berberine (BBR) in the treatment of diabetic retinopathy (DR), by using Four-dimensional independent data acquisition (4D-DIA) proteomics combined bioinformatics analysis with experimental validation. METHODS: DR injury model was established by injecting streptozotocin intraperitoneally. At 8 weeks after BBR administration, optical coherence tomography (OTC) photos and Hematoxylin-eosin staining from retina in each group were performed, then the retina was collected for 4D-DIA quantitative proteomics detection. Moreover, difference protein analysis, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI) network, as well as molecular docking was performed, respectively. In the part of experiment, Western blot (WB) and immunofluorescent staining was used to confirm the change and distribution of carbonic anhydrase 1 (CA1), one of the most important molecules from quantitative PCR detection. Lastly, RNA knockdown was used to determine the crucial role of CA1 in retinal pigment epithelial cells (RPEs) administrated with berberine. RESULTS: OCT detection showed that the outer nucleus, inner layer and outer accessory layer of RPEs were thinned in DR group, compared with in sham one, while they were thickened after berberine administration, when compared with in DR group. 10 proteins were screened out by using proteomic analysis and Venny cross plot, in which, denn domain containing 1A (DENND1A) and UTP6 small subunit processome component (UTP6) was down-regulated, while ATPase copper transporting alpha (ATP7A), periplakin (PPL), osteoglycin (OGN), nse1 Homolog (NSMCE1), membrane metalloendopeptidase (MME), lim domain only 4 (LMO4), CA1 and fibronectin 1 (FN1) was up-regulated in DR group, and the BBR treatment can effectively reverse their expressions. PPI results showed that 10 proteins shared interactions with each other, but only ATP7A, FN1 and OGN exhibited directly associated with each other. Moreover, we enlarged the linked relation up to 15 genes in network, based on 10 proteins found from proteomics detection, so as to perform deep GO and KEGG analysis. As a result, the most important biological process is involving rRNA processing; the most important cell component is small subunit processor; the most important molecular function is Phospholipid binding; the KEGG pathway was Ribosome biogenesis in eukaryotes. Moreover, molecular docking showed that LMO4, ATP7A, PPL, NSMCE1, MME, CA1 could form a stable molecular binding pattern with BBR. Of these, the mRNA expression of CA1, PPL and ATP7A and the protein level of CA1 was increased in DR, and decreased in BBR group. Lastly, CA1 RNA knockdown confirmed the crucial role of CA1 in RPE administered with BBR. CONCLUSION: The present findings confirmed the role of BBR in DR treatment and explained associated molecular network mechanism, in which, CA1 could be considered as a crucial candidate in the protection of RPEs with berberine treatment.

14.
J Hypertens ; 41(11): 1802-1810, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682069

RESUMO

BACKGROUND: Wide brachial pulse pressure (PP) has been associated with cardiovascular events, while its population distribution and association with body composition were poorly characterized in large populations. METHODS: We evaluated the age and sex distributions of PP and its associations with body composition using baseline data from the China Kadoorie Biobank. A total of 434 200 participants without diagnosed hypertension were included in the analysis. Wide PP was defined as PP above 65 mmHg. Body composition variables, including BMI, waist circumference, waist-to-hip ratio (WHR), fat mass index (FMI), fat-free mass index (FFMI), and body fat percentage (BF%), were obtained from bioelectrical impedance analysis. RESULTS: Overall, 14.3% of the participants had wide PP. Older age was consistently associated with wider PP in women but only after the andropause stage in men. The independent associations of BMI with wide PP were stronger than other body composition measures. The adjusted differences (men/women, mmHg) in PP per standard deviation (SD) increase in BMI (1.55/1.47) were higher than other body composition (BF%: 0.32/0.64, waist circumference: 0.33/0.39; WHR: 0.49/0.42). In addition, sex differences were observed. In men, the per SD difference in PP was higher for FFMI than for FMI (0.91 vs. 0.67, P  < 0.05), whereas in women, it was higher for FMI than for FFMI (1.01 vs. 0.72, P  < 0.05). CONCLUSION: Our nationwide population-based study presented the sex-specific distribution of PP over age and identified differential associations of PP with fat and fat-free mass in men and women.

15.
Mol Nutr Food Res ; 67(22): e2300208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712107

RESUMO

SCOPE: Diet and gut microbiota are involved in blood pressure regulations, but few studies have focused on the constipation patients. The study seeks to identify differences in gut microbiota between hypertensive and normotensive subjects in constipation patients, analyzes the relationship between dietary patterns and blood pressure, and explores mediation effects of gut microbiota. METHODS AND RESULTS: Gut microbial genera and dietary information of 186 functional constipation participants are characterized by 16S rRNA sequencing and a food frequency questionnaire. The hypertensive subjects shows lower α-diversity and ß-diversity of gut microbiota than normotensive (p < 0.05) and 17 differential microbial genera. The dried-beans intake frequency inversely correlated with systolic and diastolic blood pressure after multivariate adjustment (r = -0.273, p-FDR < 0.01; r = -0.251, p-FDR = 0.026, respectively). Logistic regression indicates that the individuals often consumed dried-beans have a lower hypertension risk than those never consumed [OR = 0.137, 95% CI: (0.022, 0.689), p = 0.022]. A marginal mediating effect of the genus Monoglobus is observed for the association between high-fiber dietary pattern and hypertension. CONCLUSION: In patients with functional constipation, hypertension-related gut microbial differences are identified. Dried-beans intake is inversely associated with blood pressure, and a genus may potentially mediate the association between high-fiber dietary pattern and hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Humanos , RNA Ribossômico 16S/genética , Dieta , Constipação Intestinal , Ingestão de Alimentos
16.
Sci Total Environ ; 904: 166915, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690765

RESUMO

Ground hardening in urban areas increases the risk of thermal enrichment in surface rainwater runoff. Moreover, the thermal pollution from rainwater runoff has become an important problem that damages the urban aquatic environment. Current studies have focused mainly on the potential hazard caused by runoff thermal pollution to aquatic microorganisms. However, there are few studies on the efficacy of controlling runoff thermal load through low-impact development (LID) and renovation in urban areas. The effects of LID modification were evaluated by monitoring the characteristics of the runoff thermal load on each underlying surface in the study area and conducting laboratory-scale bioretention experiments. The results showed that the initial thermal effect of each underlying surface was significant after the start of rainfall, based on the thermal load. Ceramic granules are remarkable bioretention fillers. Their average heat load and volume reduction rates are 55.6 % and 32.7 %, respectively. After LID modification, the thermal load of surface runoff in the study area decreased to 73.42 % under similar rainfall conditions. After the secondary treatment of the bioretention facility, the total thermal load of the outflow facility was 31.40 % of that before renovation. The peak thermal load reduced by 69.15 % and was delayed for 10 min. The control effect differed statistically.

17.
Chem ; 9(6): 1518-1537, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37519827

RESUMO

The widespread success of BINOL-chiral phosphoric acids (CPAs) has led to the development of several high molecular weight, sterically encumbered variants. Herein, we disclose an alternative, minimalistic chiral phosphoric acid backbone incorporating only a single instance of point chirality. Data science techniques were used to select a diverse training set of catalysts, which were benchmarked against the transfer hydrogenation of an 8-aminoquinoline. Using a univariate classification algorithm and multivariate linear regression, key catalyst features necessary for high levels of selectivity were deconvoluted, revealing a simple catalyst model capable of predicting selectivity for out-of-set catalysts. This workflow enabled extrapolation to a catalyst providing higher selectivity than both reported peptide-type and BINOL-type catalysts (up to 95:5 er). These techniques were then successfully applied towards two additional transforms. Taken together, these examples illustrate the power of combining rational design with data science (ab initio) to efficiently explore reactivity during catalyst development.

18.
J Org Chem ; 88(14): 10252-10256, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37406152

RESUMO

The skeletal editing of dibenzolactones to fluorenes by Ni- or Pd-catalyzed decarboxylation is reported. In contrast to previously reported intramolecular decarboxylative couplings, inductively electron-withdrawing ortho substituents on the aryl carboxylate moiety and metal additives are not required. The decarboxylation reaction proceeds cleanly and can be applied to the skeletal editing of a natural product analogue. Mechanistic observations are consistent with stabilization of the carboxylate-ligated Ni complex over the Ni-carboxylate ion pair, which is the key factor in promoting the challenging decarboxylation step in the catalytic cycle.

19.
Neurochem Res ; 48(11): 3457-3471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470906

RESUMO

The objective of this research was to investigate the role of lncRNA MALAT1 and HSP90 in the regulation of neuronal necroptosis in mice with cerebral ischemia-reperfusion (CIR). We used male C57BL/6J mice to establish a middle cerebral artery occlusion (MCAO) model and conducted in vitro experiments using the HT-22 mouse hippocampal neuron cell line. The cellular localization of NeuN and MLKL, as well as the expression levels of neuronal necroptosis factors, MALAT1, and HSP90 were analyzed. Cell viability and necroptosis were assessed, and we also investigated the relationship between MALAT1 and HSP90. The results showed that MALAT1 expression increased after MCAO and oxygen-glucose deprivation/re-oxygenation (OGD/R) treatment in both cerebral tissues and cells compared with the control group. The levels of neuronal necroptosis factors and the co-localization of NeuN and MLKL were also increased in MCAO mice compared with the Sham group. MALAT1 was found to interact with HSP90, and inhibition of HSP90 expression led to decreased phosphorylation levels of neuronal necroptosis factors. Inhibition of MALAT1 expression resulted in decreased co-localization levels of NeuN and MLKL, decreased phosphorylation levels of neuronal necroptosis factors, and reduced necroptosis rate in cerebral tissues. Furthermore, inhibiting MALAT1 expression also led to a shorter half-life of HSP90, increased ubiquitination level, and decreased phosphorylation levels of neuronal necroptosis factors in cells. In conclusion, this study demonstrated that lncRNA MALAT1 promotes neuronal necroptosis in CIR mice by stabilizing HSP90.


Assuntos
Isquemia Encefálica , Proteínas de Choque Térmico HSP90 , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Apoptose/genética , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Necroptose , Neurônios/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
20.
Br J Pharmacol ; 180(20): 2623-2640, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37232020

RESUMO

BACKGROUND AND PURPOSE: Glioblastoma (GBM) is the most aggressive brain tumour in the central nervous system, but the current treatment is very limited and unsatisfactory. PGE2 -initiated cAMP signalling via EP2 and EP4 receptors is involved in the tumourigenesis of multiple cancer types. However, whether or how EP2 and EP4 receptors contribute to GBM growth largely remains elusive. EXPERIMENTAL APPROACH: We performed comprehensive data analysis of gene expression in human GBM samples and determined their expression correlations through multiple bioinformatics approaches. A time-resolved fluorescence energy transfer (TR-FRET) assay was utilized to characterize PGE2 -mediated cAMP signalling via EP2 and EP4 receptors in human glioblastoma cells. Using recently reported potent and selective small-molecule antagonists, we determined the effects of inhibition of EP2 and EP4 receptors on GBM growth in subcutaneous and intracranial tumour models. KEY RESULTS: The expression of both EP2 and EP4 receptors was upregulated and highly correlated with a variety of tumour-promoting cytokines, chemokines, and growth factors in human gliomas. Further, they were heterogeneously expressed in human GBM cells, where they compensated for each other to mediate PGE2 -initiated cAMP signalling and to promote colony formation, cell invasion and migration. Inhibition of EP2 and EP4 receptors revealed that these receptors might mediate GBM growth, angiogenesis, and immune evasion in a compensatory manner. CONCLUSION AND IMPLICATIONS: The compensatory roles of EP2 and EP4 receptors in GBM development and growth suggest that concurrently targeting these two PGE2 receptors might represent a more effective strategy than inhibiting either alone for GBM treatment.


Assuntos
Glioblastoma , Glioma , Humanos , Dinoprostona/metabolismo , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...